C1000-112 無料問題集「IBM Fundamentals of Quantum Computation Using Qiskit v0.2X Developer」
Which two code fragments, when inserted into the code below, will produce the statevector shown in the output?
from qiskit import QuantumCircuit, Aer, execute
from math import sqrt
qc = QuantumCircuit(2)
# Insert fragment here
simulator = Aer.get_backend('statevector_simulator')
result = execute(qc, simulator).result()
statevector = result.get_statevector()
print(statevector)
Output:
[0.707+0.j 0.+0.j 0.+0.j 0.707+0.j]
from qiskit import QuantumCircuit, Aer, execute
from math import sqrt
qc = QuantumCircuit(2)
# Insert fragment here
simulator = Aer.get_backend('statevector_simulator')
result = execute(qc, simulator).result()
statevector = result.get_statevector()
print(statevector)
Output:
[0.707+0.j 0.+0.j 0.+0.j 0.707+0.j]
正解:B、C
解答を投票する
What is the output of the below snippet?
a = 1/np.sqrt(2)
desired_state = [a,np.sqrt(1-a**2)]
qc = QuantumCircuit(1)
qc.initialize(desired_state,0)
back_sv = BasicAer.get_backend('statevector_simulator')
result = execute(qc, back_sv).result()
qc_sv = result.get_statevector(qc)
state_fidelity(desired_state, qc_sv)
a = 1/np.sqrt(2)
desired_state = [a,np.sqrt(1-a**2)]
qc = QuantumCircuit(1)
qc.initialize(desired_state,0)
back_sv = BasicAer.get_backend('statevector_simulator')
result = execute(qc, back_sv).result()
qc_sv = result.get_statevector(qc)
state_fidelity(desired_state, qc_sv)
正解:A
解答を投票する