NCA-GENL 無料問題集「NVIDIA Generative AI LLMs」

When preprocessing text data for an LLM fine-tuning task, why is it critical to apply subword tokenization (e.
g., Byte-Pair Encoding) instead of word-based tokenization for handling rare or out-of-vocabulary words?

解説: (JPNTest メンバーにのみ表示されます)
In the context of a natural language processing (NLP) application, which approach is most effective for implementing zero-shot learning to classify text data into categories that were not seen during training?

解説: (JPNTest メンバーにのみ表示されます)
Why is layer normalization important in transformer architectures?

解説: (JPNTest メンバーにのみ表示されます)
When deploying an LLM using NVIDIA Triton Inference Server for a real-time chatbot application, which optimization technique is most effective for reducing latency while maintaining high throughput?

解説: (JPNTest メンバーにのみ表示されます)
Which of the following claims is correct about quantization in the context of Deep Learning? (Pick the 2 correct responses)

正解:A、B 解答を投票する
解説: (JPNTest メンバーにのみ表示されます)
"Hallucinations" is a term coined to describe when LLM models produce what?

解説: (JPNTest メンバーにのみ表示されます)
Which principle of Trustworthy AI primarily concerns the ethical implications of AI's impact on society and includes considerations for both potential misuse and unintended consequences?

解説: (JPNTest メンバーにのみ表示されます)
Which of the following claims is correct about TensorRT and ONNX?

解説: (JPNTest メンバーにのみ表示されます)
Which aspect in the development of ethical AI systems ensures they align with societal values and norms?

解説: (JPNTest メンバーにのみ表示されます)
What do we usually refer to as generative AI?

解説: (JPNTest メンバーにのみ表示されます)

弊社を連絡する

我々は12時間以内ですべてのお問い合わせを答えます。

オンラインサポート時間:( UTC+9 ) 9:00-24:00
月曜日から土曜日まで

サポート:現在連絡