さまざまな記憶方法
毎日新しい知識を学んでいるだけでなく、常に忘れられていた知識も私たちは記憶と鍛造の過程にあったと言うことができます。 これには優れたメモリアプローチが必要です、そしてApache-Hadoop-Developer研究の脳ダンプはそれを上手く行います。Apache-Hadoop-Developer準備ガイドは、テキスト、画像、グラフィックメモリ方式などの多様化を採用し、情報を学ぶためにマークアップを区別する必要があります。 全体的なレイアウト、目標とされた長期記憶の形成へのより良い手がかり、そして実践のサイクルを通して、知識をより深く私の頭の中に印刷させてください。Apache-Hadoop-Developer試験問題は非常に科学的かつ妥当であり、あなたは簡単にすべてを覚えることができます。
強力なユーザー共有プラットフォーム
もちろん、個人的な学習効果は特に目立ちません。なぜなら、この問題を解決するために、テストの難点、良いアップデートを同時に得られないという最新の試験の傾向を掴むのは難しいからです。 圧倒的多数のユーザーのためのApache-Hadoop-Developer研究問題集は、ユーザーが共有するための強力なプラットフォームを提供します。 ここでは、Apache-Hadoop-Developer試験問題のすべてのユーザが自分のID番号を通してプラットフォームと他のユーザにログオンして共有し交換することができ、プラットフォーム上でさらに仲良くなるために多くの人々と努力することができます。 他の、学習や生活の中で彼らの困難を解決するためにお互い。Apache-Hadoop-Developer準備ガイドは、学習環境だけでなく、家庭のような学習環境を作成することもできます。
便利なPDFダウンロードモード
ユーザーのオフラインでの読解を容易にするために、Apache-Hadoop-Developer学習問題集は、特にユーザー向けのPDFモードを開発するために、破片の時間を学習に使用することができます。 このモードでは、ユーザーはダウンロードして印刷すること、紙にメモを取ることが簡単であること、および自分の記憶の弱いリンクを学ぶために、教材内のApache-Hadoop-Developer準備ガイドを知ることができます。 我々のApache-Hadoop-Developer試験問題とユーザの効率を非常に改善します。 あるいは、いわゆる「いい」を忘れてしまうかもしれませんが、今ではオンラインで読むのに便利なあらゆる種類のデジタル機器ですが、私たちの多くは、彼らの記憶パターンを深めるために書面で使われています。 私たちのApache-Hadoop-Developer準備ガイドは、この点でユーザーの需要を満たすのに非常に良いものです。ユーザーが良い環境で読み書きできるようにすることで、学んだことを継続的に統合することができます。
私たちのApache-Hadoop-Developer研究の問題集は、この点でユーザの要求を満たすのに非常に役立ちます。Apache-Hadoop-Developer準備ガイドは高品質です。 それでテストの準備をするためのすべての効果的な中心的な習慣があります。 私たちの職業的能力により、Apache-Hadoop-Developer試験問題を編集するのに必要なテストポイントに同意することができます。 それはあなたの難しさを解決するための試験の中心を指しています。 だから高品質の材料はあなたが効果的にあなたの試験に合格し、目標を達成するために簡単に感じるようにすることができます。
Hortonworks Hadoop 2.0 Certification exam for Pig and Hive Developer 認定 Apache-Hadoop-Developer 試験問題:
1. To use a lava user-defined function (UDF) with Pig what must you do?
A) Pass arguments to the constructor of UDFs implementation class
B) Register the JAR file containing the UDF
C) Define an alias to shorten the function name
D) Put the JAR file into the user's home folder in HDFS
2. Workflows expressed in Oozie can contain:
A) Sequences of MapReduce job only; on Pig on Hive tasks or jobs. These MapReduce sequences can be combined with forks and path joins.
B) Iterntive repetition of MapReduce jobs until a desired answer or state is reached.
C) Sequences of MapReduce and Pig. These sequences can be combined with other actions including forks, decision points, and path joins.
D) Sequences of MapReduce and Pig jobs. These are limited to linear sequences of actions with exception handlers but no forks.
3. What is the term for the process of moving map outputs to the reducers?
A) Combining
B) Shuffling and sorting
C) Reducing
D) Partitioning
4. Which of the following tool was designed to import data from a relational database into HDFS?
A) Flume
B) Ambari
C) HCatalog
D) Sqoop
5. What types of algorithms are difficult to express in MapReduce v1 (MRv1)?
A) Large-scale graph algorithms that require one-step link traversal.
B) Algorithms that require applying the same mathematical function to large numbers of individual binary records.
C) Text analysis algorithms on large collections of unstructured text (e.g, Web crawls).
D) Algorithms that require global, sharing states.
E) Relational operations on large amounts of structured and semi-structured data.
質問と回答:
質問 # 1 正解: B | 質問 # 2 正解: C | 質問 # 3 正解: B | 質問 # 4 正解: D | 質問 # 5 正解: D |